El proceso de descubrimiento matemático comenzó en tiempos prehistóricos, con el desarrollo de modos de contar cosas que era necesario cuantificar.
En su versión más simple, podía tratarse de marcas en huesos o palos, un medio rudimentario pero fiable de registrar el número de determinadas cosas.
Con el tiempo se asignaron palabras y símbolos a los números, y evolucionaron los primeros sistemas de numeración, un medio para expresar operaciones tales como la adquisición de artículos adicionales, el agotamiento de producto almacenado u operaciones básicas de la aritmética.
Con el paso de la caza y la recolección al comercio y a la agricultura, y con la sofisticación creciente de las sociedades, las operaciones aritméticas y un sistema de numeración se convirtieron en herramientas esenciales para transacciones de toda clase.
Para facilitar el comercio, la gestión de existencias y los impuestos de incontables bienes tales como aceite, harina o parcelas de terreno, se desarrollaron sistemas de medida, asignando valores numéricos a dimensiones tales como el peso y la longitud. Los cálculos se volvieron también más complejos, desarrollándose los conceptos de multiplicación y división a partir de la suma y la resta, lo cual permitió calcular, por ejemplo, áreas de terreno.
En las civilizaciones antiguas, estos nuevos hallazgos matemáticos, y en particular la medición de objetos en el espacio, constituyeron el fundamento de la geometría, conocimiento que se podía aplicar a la construcción y la fabricación de herramientas. Al emplear estas mediciones para fines prácticos, surgieron determinados patrones que podían resultar útiles a su vez. Con un triángulo de lados de tres, cuatro y cinco unidades se podía hacer una escuadra de arquitecto sencilla pero precisa. Sin tales herramientas y conocimientos precisos, no se habrían podido construir los caminos, canales, zigurats y pirámides de las antiguas Mesopotamia y Egipto.
A medida que se iban encontrando nuevas aplicaciones para estos descubrimientos matemáticos –en la astronomía, la navegación, la ingeniería, la contabilidad, la tributación y otros campos– fueron surgiendo nuevos patrones e ideas. Las civilizaciones antiguas pusieron los cimientos de las matemáticas por medio de este proceso interdependiente de aplicación y descubrimiento, pero desarrollaron también la fascinación por la matemática en sí misma, o las llamadas matemáticas puras.
A partir de mediados del I milenio a.C. comenzaron a surgir los primeros matemáticos puros en Grecia, y poco más tarde en India y China, y construyeron sobre el legado de los pioneros prácticos de la disciplina: los ingenieros, astrónomos y exploradores de las civilizaciones anteriores.
Aritmética y álgebra
Así comenzó la historia de las matemáticas tal como hoy se conciben: los descubrimientos, conjeturas y conocimientos de los matemáticos que conforman el grueso de este libro. Además de los pensadores individuales y sus ideas, es una historia de las sociedades y las culturas, un hilo de pensamiento en continuo desarrollo que desde las antiguas civilizaciones de Mesopotamia y Egipto pasó por Grecia, China, India, el Imperio islámico y la Europa del Renacimiento hasta llegar al mundo moderno. En su evolución, las matemáticas fueron incorporando varios campos de estudio separados, pero interconectados.
El primero de estos campos que surgió, y en muchos aspectos el más fundamental, fue el estudio de los números y las cantidades, hoy llamado aritmética, del griego arithmós («número»). En su nivel más básico, se ocupa de contar y asignar valores numéricos a las cosas, pero también de las operaciones aplicables a los números, como la suma, resta, multiplicación y división.
Del simple concepto de un sistema numérico proviene el estudio de las propiedades de los números, y también el estudio del concepto mismo. Determinados números –como las constantes π., e, o los números primos e irracionales– han sido objeto de una fascinación especial, y con ello de estudios considerables.
Otro campo relevante de las matemáticas es el álgebra, que es el estudio de la estructura, el modo en que se organizan las matemáticas, y tiene por tanto alguna relevancia en todos los demás campos. Lo que distingue el álgebra de la aritmética es el uso de símbolos tales como letras para representar variables (números desconocidos).
En su forma más básica, el álgebra es el estudio de las reglas subyacentes de uso de dichos símbolos en matemáticas, por ejemplo en las ecuaciones. Los métodos para resolver ecuaciones, incluso complejas de segundo grado, los habían descubierto ya los antiguos babilonios, pero fueron los matemáticos medievales de la edad de oro del islam los pioneros del empleo de símbolos para simplificar el proceso, y nos dejaron el término álgebra, del árabe al jabr.
Desarrollos más recientes del álgebra han extendido la idea de la abstracción al estudio de la estructura algebraica, conocida como álgebra abstracta.
Geometría y cálculo
Un tercer gran campo de las matemáticas es la geometría, que se ocupa del concepto de espacio y de las relaciones entre los objetos en el mismo: el estudio de la forma, tamaño y posición de las figuras. Evolucionó a partir de la muy práctica actividad de describir las dimensiones físicas de las cosas en proyectos de ingeniería y construcción, de la medición y distribución de parcelas de terreno y de las observaciones astronómicas para la navegación y la elaboración de calendarios.
Una rama particular de la geometría, la trigonometría (el estudio de las propiedades de los triángulos) resultó especialmente útil para tales empeños. Quizá debido a su carácter tan concreto, la geometría fue la piedra angular para muchas civilizaciones antiguas, a las que aportó un medio de resolución de problemas y demostraciones en otros campos.
TAL VEZ TE INTERESE: Historia del ajedrez, conoce más de este bello deporte
Así fue particularmente en la antigua Grecia, donde geometría y matemáticas fueron prácticamente sinónimas. El legado de los grandes filósofos matemáticos como Pitágoras, Platón y Aristóteles fue consolidado por Euclides, cuyos principios matemáticos basados en una combinación de geometría y lógica fueron aceptados como fundamento de la disciplina durante unos dos mil años. En el siglo XIX, sin embargo, se propusieron alternativas a la geometría euclidiana clásica que abrieron nuevos campos de estudio, entre ellos, la topología, que estudia la naturaleza y las propiedades no solo de los objetos en el espacio, sino del espacio mismo.
Desde la época clásica, las matemáticas se ocuparon de situaciones estáticas, o de cómo son las cosas en un momento dado, y no ofrecían un medio para medir o calcular el cambio continuo. El cálculo, desarrollado de forma independiente por Gottfried Leibniz e Isaac Newton en el siglo XVII, dio respuesta a este problema. Las dos ramas del cálculo, integral y diferencial, aportaron un medio de análisis para cosas tales como la pendiente de las curvas en un gráfico y el área bajo ellas, con el fin de describir y calcular el cambio.
El hallazgo del cálculo inauguró un campo de análisis que sería especialmente relevante más adelante, por ejemplo para la teoría de la mecánica cuántica y la teoría del caos en el siglo XX.
A finales del siglo XIX y principios del XX surgió un nuevo campo matemático, el de los fundamentos de las matemáticas, que hizo revivir el vínculo entre filosofía y matemáticas. Al igual que hiciera Euclides en el siglo III a.C., estudiosos como Gottlob Frege y Bertrand Russell trataron de descubrir los fundamentos lógicos en los que se basan los principios matemáticos.
Su trabajo inspiró un reexamen de la naturaleza de las matemáticas mismas, cómo funcionan y cuáles son sus límites. Este estudio de los conceptos matemáticos básicos es, quizá, el más abstracto de los campos, una especie de metamatemática, pero es un anexo esencial de todos los demás campos de la matemática moderna.
TAL VEZ TE INTERESE: Evolución del teléfono e historia del 1er persona que lo descubrió
Con información de Red Historia